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What is a number system?

General idea
e Represent any element x of some set X by a finite or infinite word
(the (digit-)expansion of x) over some set of symbols (the digits)
e Expansions are usually not chosen at random but follow certain rules
o Most common way to define them: every new step of some iterative process fixes
another digit of the expansion

Example
e Tio : Z19 — Zio defines a number system on Zjg

22 ifn=0 mod 10

n—

—9 . _
"10 ifn=9 mod 10

n = 02203 ( = 2203 € N): Orbit of n: (02203, 0220,022,02,0,0,...)
Expansion of n: (3,0,2,2,0,0,...)
n = 95683 ( = —4317 € Z): Orbit of n: (95683, 9568, 956,95,9,9,9,...)
Expansion of n: (3,8,6,5,9,9,...)
n = 8571429 (= 3/7 € Q): Orbit of n: (8571429, 857142, 285714, 428571, .. .)
Expansion of n: (9,2,4,1,...)




What is a number system?

More examples of number systems on Z; and Z3 ‘




What is a number system?

More examples of number systems on Z; and Z3 ‘

Number system

Digit expansions




What is a number system?

‘ More examples of number systems on Z; and Z3 ‘

Number system

Digit expansions

ERSIE]

HH{I
2

T, : Zo — Zo> (standard base 2)

ifn=0 mod?2
ifn=1 mod?2




What is a number system?

‘ More examples of number systems on Z; and Z3 ‘

Digit expansions

Number system
T, : Zo — Zo> (standard base 2) N: period 0
fn=0 d2 —N: period 1
= mo Q: periodic

ERSIE]

nw 1.
o ifn=1 mod?2




What is a number system?

‘ More examples of number systems on Z; and Z3 ‘

Number system Digit expansions
T, : Zo — Zo> (standard base 2) N: period 0
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‘ More examples of number systems on Z; and Z3 ‘

Number system

Digit expansions

T, : Zo — Zo> (standard base 2) N: period 0
n e —N: period 1
nisd2 ifn=0 mod2 Q: periodic
"51 ifn=1 mod?2
Tc : Zo — Zo (Collatz) (conjecture)
N: period 10

ifn=0 mod?2
ifn=1 mod?2

n
2
N9 3041
2

—N: periods 1, 110, or 11110111000
Q: periodic

Tap : Z3 — Z3 (non-standard ternary)
3 ifn=0 mod3
32 ifn=1 mod3
5> fn=2 mod3

n—

(a=1 b=-1):
Z: period 0
Q: periodic
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F=(FI0],....Flp 1) : Zp = Zp, 0> (FIn%pl(n) — Fln%pkry%p ) /p
F is called a p-adic system if D(F)[m][0, k — 1] = D(F)[n][0, k—1] & m = n mod pk
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11 2 1 2 1/1 0 1 0
21 2 1 2 1 210 1 0 1
3/ 3 5 8 4 3/1 10 0
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16|16 8 4 2 16/0 0 0 0
S(Ta) ] 0 1 2 3 .- D(Tc) |0 1 2 3
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Examples: T, = (x,...,x), Tc = (x,3x+1), T, = (x,x —a,x — b)

11 2 1 2 1 ﬂ o 1] 0
21 2 1 2 1 210l 1/ o] 1
3/ 3 5 8 4 3/1 1/ 0| 0
4| 3 2 1 2 410 0 1] 0
5/ 5 8 4 2 5/1 0 0/ 0
6| 6 3 5 8 6/0 1 1/ 0
7| 7 11 17 26 711 1 1] 0
8| 8 4 2 1 810 0 0] 1
9| 9 14 7 11 911 0 1 1
10/10 5 8 4 10/0 1 0 0
1111 17 26 13 111 1 0 1
12|12 6 3 5 12/0 0 1 1
13/13 20 10 5 13/1 0 0 1
14|14 7 11 17 1410 1 1 1
15|15 23 35 53 51 1 1 1
16|16 8 4 2 160 0 0 0
S(Ta) ] 0 1 2 3 .- D(Tc) |0 1 2 3
Zp

z,
S(F) € (z,") D(F) € ({0,....p—1}"0) "
F-sequence table F-digit table
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What is a p-adic system?
F=(FOl,....Flo—11): Z, + Zp, > (FIn%pl(n) — Fln%pkm%p ) /p

F is called a p-adic system if D(F)[m][0, k — 1] = D(F)[n][0,k —1] & m = n mod pk

Properties of p-adic systems
e D(F) defines a bijection between Z, and {0,...,p — 1}M0:
the expansions of all p-adic integers are unique and every possible expansion occurs
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F[r](m) = F[r](n) mod p¥ <> m=n mod p* foral m=n=r mod p, k €N
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What is a p-adic system?

F=(FI0],....Flp 1) : Zp = Zp, 0> (FIn%pl(n) — Fln%pkry%p ) /p
F is called a p-adic system if D(F)[m][0, k — 1] = D(F)[n][0, k—1] & m = n mod pk

More examples
o T,= (X,...,X), TC = (X73X+ l)v Ta,b = (X7X —aXx— b)

11 2 1 1 ﬂ o 1
212 1 2 210 11 0
313 5 8 3|1 11 0
414 2 1 410 0 1
515 8 4 51 0 O
6|6 3 5 6|0 1 1
7|7 11 17 711 1 1
8|8 4 2 8|0 0 O
S(Te¢) | O 1 2 D(T¢) |0 1 2




What is a p-adic system?

F=(FI0],....Flp 1) : Zp = Zp, 0> (FIn%pl(n) — Fln%pkry%p ) /p
F is called a p-adic system if D(F)[m][0, k — 1] = D(F)[n][0, k—1] & m = n mod pk

More examples
o T,= (X,...,X), TC = (X73X+ l)v Ta,b = (X7X —aXx— b)

o (7x3 —4x%> + x — 6,3x" — x + 1,x% + 6x + 2), (¥x2+%x—4,%x+5)

1|1 34/11 64805/2541 1 ﬂ o] 1
212 227/21 205 /231 210 1 1
313 47/11 6084121 311 11 0
2|4 880721 12621386/3087 210 0l 0
5|5 60/11 64376/847 5/1 0 0
6|6  639/7 1346 /77 6|0 1 0
717  73/11 777{ 21 711 1 1
8 |8 3338/21 59723107/1029 8|0 0 1
S(F) |o 1 2 D(F) |0 1 2
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o Th=(x,...,x), Tc =(x,3x+1), T, =(x,x —a,x — b)

o (7x3 —4x%> + x — 6,3x" — x + 1,x% + 6x + 2), (¥x2+%x—4,%x+5)
o (ix? — 6x + 5i, x, x, x, x) where i? = —1, i.e. i=...31212 or i = ... 13233



What is a p-adic system?
F=(FOl,....Flo— 1) : Z, » Zp, > (FIn%pl(n) — FIn%pkm%p ) /p

F is called a p-adic system if D(F)[m][0, k — 1] = D(F)[n][0, k—1] & m = n mod pk

More examples

o Th=(x,...,x), Tc =(x,3x+1), T, =(x,x —a,x — b)

o (7x3 —4x%> + x — 6,3x" — x + 1,x% + 6x + 2), (¥x2+ %x—4, %X+5)

o (ix? — 6x + 5i, x, x, x, x) where i? = —1, i.e. i=...31212 or i = ... 13233

e If PEZ[x] is a p-permutation polynomial (P:Z/p*Z — 7./ p*7Z bijective for all k € N)
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e If PEZ[x] is a p-permutation polynomial (P:Z/p*Z — 7./ p*7Z bijective for all k € N)
and P :Z/pZ — Z/pZ is the identity function,
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F is called a p-adic system if D(F)[m][0, k — 1] = D(F)[n][0, k—1] & m = n mod pk

More examples
o Th=(x,...,x), Tc =(x,3x+1), T, =(x,x —a,x — b)
o (7x3 —4x%> + x — 6,3x" — x + 1,x% + 6x + 2), (¥x2+ %x—4, %X+5)
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What is a p-adic system?
F=(FOl,....Flo— 1) : Z, » Zp, > (FIn%pl(n) — FIn%pkm%p ) /p

F is called a p-adic system if D(F)[m][0, k — 1] = D(F)[n][0, k—1] & m = n mod pk

More examples
o Th=(x,...,x), Tc =(x,3x+1), T, =(x,x —a,x — b)
o (7x3 —4x%> + x — 6,3x" — x + 1,x% + 6x + 2), (¥x2+ %x—4, %X+5)
o (ix? — 6x + 5i, x, x, x, x) where i? = —1, i.e. i=...31212 or i = ... 13233
e If PEZ[x] is a p-permutation polynomial (P:Z/p*Z — 7./ p*7Z bijective for all k € N)
and P :7Z/pZ — 7/pZ is the identity function,
then D(P) := (D(Tp)[P(n)])nez, defines a digit-table and thus a p-adic system

Example: P(x) = 10x? — 3x + 4 is a 2-permutation polynomial

1 1 ﬂ 11 0
2 38 210 111
3 85 3|11 0 1
4 | 152 410 0/ 0
51 239 511 1 1
6 | 346 6|0 1 O
7| 473 711 0 O
8 8|10 0 1

BP [0 1 2

...
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What is a p-adic system?
F=(FI0L.... Flo—11) : Zp = Zp, 0> (FIn%pl(n) — Fln%pltm%p) /p

F is called a p-adic system if D(F)[m][0, k — 1] = D(F)[n][0, k —1] & m = n mod pk

Obligatory proof
Lemma: If f: Zp, — Zp is (p, r)-suitable, then so is g : Zp — Zp, x — f(x) + px
Remember: f (p, r)-suitable f (f(m) = f(n) mod p* & m=n mod p*)
S (X, ...y %, f(X),X,...,x) is a p-adic system
N~
r-th position

Theorem: If f : Z, — Zp is (p, r)-suitable and f(n) =0 mod p for all n =r mod p,
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Thank you!



