An introduction to *p*-adic systems: A new kind of number system

Mario Weitzer

Graz University of Technology, Austria

Numeration 2017, Rome, June 9

Real numbers $\mathbb R$	10-adic numbers \mathbb{Q}_{10}
	40.40.45.45.5

Real numbers $\mathbb R$	10 -adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal	
point: ±189.25619	

	· ·
Real numbers $\mathbb R$	10 -adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point:39227.493

Real numbers $\mathbb R$	10 -adic numbers \mathbb{Q}_{10}
Finitely many digits $\frac{\text{left}}{\text{point:}}$ of the decimal point: $\frac{\pm 189.25619}{\text{point}}$	Finitely many digits right of the decimal point:39227.493
Representation "almost unique":	
14.27999 = 14.28000	

imal
ual

Real numbers $\mathbb R$	10-adic numbers \mathbb{Q}_{10}
Finitely many digits $\frac{\text{left}}{\text{point:}}$ of the decimal point: $\frac{\pm 189.25619}{\text{constant}}$	Finitely many digits right of the decimal point:39227.493
Representation "almost unique": 14.27999 = 14.28000	Representation completely unique: $a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!) 189.15 301.57 490.72	

Real numbers $\mathbb R$	10-adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point:39227.493
Representation "almost unique": 14.27999 = 14.28000	Representation completely unique: $a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!) 189.15 301.57 490.72	Addition: as in school (no limits!):39227.49325693.12264920.615

Real numbers $\mathbb R$	10 -adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point:39227.493
Representation "almost unique":	Representation completely unique:
14.27999 = 14.28000	$a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!)	Addition: as in school (no limits!):
189.15	39227.493
<u>301.57</u>	25693.122
490.72	64920.615
Multiplication: as in school (limits!)	

Real numbers $\mathbb R$	10-adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point:39227.493
Representation "almost unique": $\frac{14.27999}{14.28000}$	Representation completely unique: $a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!) 189.15 301.57 490.72	Addition: as in school (no limits!):39227.49325693.12264920.615
Multiplication: as in school (limits!)	Multiplication: as in school (no limits!)

Real numbers $\mathbb R$	10-adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point: 39227.493
Representation "almost unique": 14.27999 = 14.28000	Representation completely unique: $a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!) 189.15 301.57 490.72	Addition: as in school (no limits!):39227.49325693.12264920.615
Multiplication: as in school (limits!) $(\mathbb{R}, +, \cdot): \text{ field}$	Multiplication: as in school (no limits!)
(M, +, ·). Heid	

Real numbers $\mathbb R$	10-adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point: 39227.493
Representation "almost unique": 14.27999 = 14.28000	Representation completely unique: $a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!) 189.15 301.57 490.72	Addition: as in school (no limits!):39227.49325693.12264920.615
Multiplication: as in school (limits!)	Multiplication: as in school (no limits!)
$(\mathbb{R},+,\cdot)$: field	$(\mathbb{Q}_{10},+,\cdot)$: not a field

Real numbers $\mathbb R$	10 -adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point:39227.493
Representation "almost unique": 14.27999 = 14.28000	Representation completely unique: $a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!) 189.15 301.57 490.72	Addition: as in school (no limits!):39227.49325693.12264920.615
Multiplication: as in school (limits!)	Multiplication: as in school (no limits!)
$(\mathbb{R},+,\cdot)$: field	$(\mathbb{Q}_{10},+,\cdot)$: not a field (but $(\mathbb{Q}_p,+,\cdot)$ is, if p is prime)

Real numbers $\mathbb R$	10 -adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point:39227.493
Representation "almost unique": 14.27999 = 14.28000	Representation completely unique: $a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!) 189.15 301.57 490.72	Addition: as in school (no limits!):39227.49325693.12264920.615
Multiplication: as in school (limits!)	Multiplication: as in school (no limits!)
$(\mathbb{R},+,\cdot)$: field	$(\mathbb{Q}_{10},+,\cdot)$: not a field (but $(\mathbb{Q}_p,+,\cdot)$ is, if p is prime)
Doesn't depend on base:	
" $\mathbb{R} \simeq \mathbb{R}_2 \simeq \mathbb{R}_{10} \simeq \mathbb{R}_{60}$ "	

Real numbers $\mathbb R$	10-adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal	Finitely many digits right of the decimal
point: ±189.25619	point:39227.493
Representation "almost unique":	Representation completely unique:
14.27999 = 14.28000	$a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!)	Addition: as in school (no limits!):
189.15	39227.493
301.57	25693.122
490.72	64920.615
Multiplication: as in school (limits!)	Multiplication: as in school (no limits!)
$(\mathbb{R},+,\cdot)$: field	$(\mathbb{Q}_{10},+,\cdot)$: not a field
	(but $(\mathbb{Q}_p, +, \cdot)$ is, if p is prime)
Doesn't depend on base:	Does depend on base:
" $\mathbb{R} \simeq \mathbb{R}_2 \simeq \mathbb{R}_{10} \simeq \mathbb{R}_{60}$ "	$\mathbb{Q}_2 \not\simeq \mathbb{Q}_3 \not\simeq \mathbb{Q}_{10} \simeq \mathbb{Q}_2 \times \mathbb{Q}_5$

Real numbers $\mathbb R$	10-adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point:39227.493
Representation "almost unique": 14.27999 = 14.28000	Representation completely unique: $a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!) 189.15 301.57 490.72	Addition: as in school (no limits!):39227.49325693.12264920.615
Multiplication: as in school (limits!)	Multiplication: as in school (no limits!)
$(\mathbb{R},+,\cdot)$: field	$(\mathbb{Q}_{10},+,\cdot)$: not a field (but $(\mathbb{Q}_p,+,\cdot)$ is, if p is prime)
Doesn't depend on base:	Does depend on base:
" $\mathbb{R} \simeq \mathbb{R}_2 \simeq \mathbb{R}_{10} \simeq \mathbb{R}_{60}$ "	$\mathbb{Q}_2 \not\simeq \mathbb{Q}_3 \not\simeq \mathbb{Q}_{10} \simeq \mathbb{Q}_2 \times \mathbb{Q}_5$
"Real integers" Z: No digits right of the decimal point: 189	

Real numbers $\mathbb R$	10-adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point: 39227.493
Representation "almost unique": 14.27999 = 14.28000	Representation completely unique: $a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!) 189.15 301.57 490.72	Addition: as in school (no limits!):39227.49325693.12264920.615
Multiplication: as in school (limits!)	Multiplication: as in school (no limits!)
$(\mathbb{R},+,\cdot)$: field	$(\mathbb{Q}_{10},+,\cdot)$: not a field (but $(\mathbb{Q}_p,+,\cdot)$ is, if p is prime)
Doesn't depend on base:	Does depend on base:
" $\mathbb{R} \simeq \mathbb{R}_2 \simeq \mathbb{R}_{10} \simeq \mathbb{R}_{60}$ "	$\mathbb{Q}_2 \not\simeq \mathbb{Q}_3 \not\simeq \mathbb{Q}_{10} \simeq \mathbb{Q}_2 \times \mathbb{Q}_5$
"Real integers" \mathbb{Z} : No digits right of the decimal point: 189	10-adic integers \mathbb{Z}_{10} : No digits right of the decimal point: 39227

Real numbers $\mathbb R$	10-adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point:39227.493
Representation "almost unique":	Representation completely unique:
14.27999 = 14.28000	$a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!) 189.15 301.57	Addition: as in school (no limits!):39227.49325693.122
490.72	64920.615
Multiplication: as in school (limits!)	Multiplication: as in school (no limits!)
$(\mathbb{R},+,\cdot)$: field	$(\mathbb{Q}_{10},+,\cdot)$: not a field (but $(\mathbb{Q}_p,+,\cdot)$ is, if p is prime)
Doesn't depend on base:	Does depend on base:
" $\mathbb{R} \simeq \mathbb{R}_2 \simeq \mathbb{R}_{10} \simeq \mathbb{R}_{60}$ "	$\mathbb{Q}_2 \not\simeq \mathbb{Q}_3 \not\simeq \mathbb{Q}_{10} \simeq \mathbb{Q}_2 \times \mathbb{Q}_5$
"Real integers" \mathbb{Z} : No digits right of the decimal point: $\frac{189}{}$	10-adic integers \mathbb{Z}_{10} : No digits right of the decimal point:39227
$\mathbb{Q}\subseteq\mathbb{R}$	

Real numbers $\mathbb R$	10 -adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal	Finitely many digits right of the decimal
point: ±189.25619	point:39227.493
Representation "almost unique":	Representation completely unique:
14.27999 = 14.28000	$a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!)	Addition: as in school (no limits!):
189.15	39227.493
301.57	25693.122
490.72	64920.615
Multiplication: as in school (limits!)	Multiplication: as in school (no limits!)
$(\mathbb{R},+,\cdot)$: field	$(\mathbb{Q}_{10},+,\cdot)$: not a field
	(but $(\mathbb{Q}_p,+,\cdot)$ is, if p is prime)
Doesn't depend on base:	Does depend on base:
" $\mathbb{R} \simeq \mathbb{R}_2 \simeq \mathbb{R}_{10} \simeq \mathbb{R}_{60}$ "	$\mathbb{Q}_2 \not\simeq \mathbb{Q}_3 \not\simeq \mathbb{Q}_{10} \simeq \mathbb{Q}_2 \times \mathbb{Q}_5$
"Real integers" Z: No digits right of the	10-adic integers \mathbb{Z}_{10} : No digits right of
decimal point: 189	the decimal point:39227
$\mathbb{Q}\subseteq\mathbb{R}$	$\mathbb{Q} \subseteq \mathbb{Q}_{10} \colon \frac{8571429 \cdot 7 = 3}{3} \Rightarrow \frac{3/7 \in \mathbb{Q}_{10}}{3}$

Real numbers $\mathbb R$	10-adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point: 39227.493
Representation "almost unique": 14.27999 = 14.28000	Representation completely unique: $a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!) 189.15 301.57 490.72	Addition: as in school (no limits!):39227.49325693.12264920.615
Multiplication: as in school (limits!)	Multiplication: as in school (no limits!)
$(\mathbb{R},+,\cdot)$: field	$(\mathbb{Q}_{10},+,\cdot)$: not a field (but $(\mathbb{Q}_p,+,\cdot)$ is, if p is prime)
Doesn't depend on base:	Does depend on base:
" $\mathbb{R} \simeq \mathbb{R}_2 \simeq \mathbb{R}_{10} \simeq \mathbb{R}_{60}$ "	$\mathbb{Q}_2 \not\simeq \mathbb{Q}_3 \not\simeq \mathbb{Q}_{10} \simeq \mathbb{Q}_2 \times \mathbb{Q}_5$
"Real integers" \mathbb{Z} : No digits right of the decimal point: 189	10-adic integers \mathbb{Z}_{10} : No digits right of the decimal point: 39227
$\mathbb{Q}\subseteq\mathbb{R}$	$\mathbb{Q} \subseteq \mathbb{Q}_{10} \colon \overline{8571429 \cdot 7} = 3 \Rightarrow 3/7 \in \mathbb{Q}_{10}$ $\mathbb{Z} \subseteq \mathbb{Z}_{10} \colon \overline{983 + 17} = 0 \Rightarrow -17 \in \mathbb{Z}_{10}$

Real numbers $\mathbb R$	10 -adic numbers \mathbb{Q}_{10}
Finitely many digits left of the decimal point: ±189.25619	Finitely many digits right of the decimal point:39227.493
Representation "almost unique": 14.27999 = 14.28000	Representation completely unique: $a = b \Leftrightarrow \text{all digits of } a \text{ and } b \text{ are equal}$
Addition: as in school (limits!) 189.15 301.57 490.72	Addition: as in school (no limits!):39227.49325693.12264920.615
Multiplication: as in school (limits!)	Multiplication: as in school (no limits!)
$(\mathbb{R},+,\cdot)$: field	$(\mathbb{Q}_{10},+,\cdot)$: not a field (but $(\mathbb{Q}_p,+,\cdot)$ is, if p is prime)
Doesn't depend on base:	Does depend on base:
" $\mathbb{R} \simeq \mathbb{R}_2 \simeq \mathbb{R}_{10} \simeq \mathbb{R}_{60}$ "	$\mathbb{Q}_2 \not\simeq \mathbb{Q}_3 \not\simeq \mathbb{Q}_{10} \simeq \mathbb{Q}_2 \times \mathbb{Q}_5$
"Real integers" \mathbb{Z} : No digits right of the decimal point: 189	10-adic integers \mathbb{Z}_{10} : No digits right of the decimal point:39227
$\mathbb{Q}\subseteq\mathbb{R}$	

In fancy language

• \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$:

In fancy language

• \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$:
Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619\ldots,9.25635\ldots) = |9.25619\ldots-9.25635\ldots| = |-0.00016| \le \frac{1}{10^3}$

In fancy language

- $\mathbb R$ is the completion of $\mathbb Q$ with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619\ldots,9.25635\ldots) = |9.25619\ldots-9.25635\ldots| = |-0.00016| \le \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$:

In fancy language

- \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619..., 9.25635...) = |9.25619... - 9.25635...| = |-0.00016| <math>\leq \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$: Two rational numbers are close if many digits left of the decimal point coincide $d(\dots 85714.2, \dots 26714.2) = \|\dots 85714.2 - \dots 26714.2\|_{10} = \|\dots 59000\|_{10} = \frac{1}{10^3}$

In fancy language

- \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619..., 9.25635...) = |9.25619... - 9.25635...| = |-0.00016| <math>\leq \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$: Two rational numbers are close if many digits left of the decimal point coincide $d(\dots 85714.2, \dots 26714.2) = \|\dots 85714.2 - \dots 26714.2\|_{10} = \|\dots 59000\|_{10} = \frac{1}{103}$

In fancy language

- \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619..., 9.25635...) = |9.25619... - 9.25635...| = |-0.00016| <math>\leq \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$: Two rational numbers are close if many digits left of the decimal point coincide $d(\dots 85714.2, \dots 26714.2) = \|\dots 85714.2 - \dots 26714.2\|_{10} = \|\dots 59000\|_{10} = \frac{1}{10^3}$

More facts on p-adic integers

• $\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{0}$ (17 = $\overline{0}$ 17),

In fancy language

- \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619..., 9.25635...) = |9.25619... - 9.25635...| = |-0.00016| <math>\leq \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$: Two rational numbers are close if many digits left of the decimal point coincide $d(\dots 85714.2, \dots 26714.2) = \|\dots 85714.2 - \dots 26714.2\|_{10} = \|\dots 59000\|_{10} = \frac{1}{10^3}$

More facts on p-adic integers

• $\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{0}$ (17 = $\overline{0}$ 17), \mathbb{N} dense in \mathbb{Z}_{10} !

In fancy language

- \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619..., 9.25635...) = |9.25619... - 9.25635...| = |-0.00016| <math>\leq \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$: Two rational numbers are close if many digits left of the decimal point coincide $d(\dots 85714.2, \dots 26714.2) = \|\dots 85714.2 - \dots 26714.2\|_{10} = \|\dots 59000\|_{10} = \frac{1}{10^3}$

- $\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{0}$ (17 = $\overline{0}$ 17), \mathbb{N} dense in \mathbb{Z}_{10} !
- $-\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{9}$ $(-17 = \overline{9}83)$

In fancy language

- \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619..., 9.25635...) = |9.25619... - 9.25635...| = |-0.00016| <math>\leq \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$: Two rational numbers are close if many digits left of the decimal point coincide $d(\dots 85714.2, \dots 26714.2) = \|\dots 85714.2 - \dots 26714.2\|_{10} = \|\dots 59000\|_{10} = \frac{1}{10^3}$

- $\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{0}$ (17 = $\overline{0}$ 17), \mathbb{N} dense in \mathbb{Z}_{10} !
- $-\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{9}$ $(-17 = \overline{9}83)$
- $\{n/d \in \mathbb{Q} \mid \gcd(d,10) = 1\} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic $(3/7 = \overline{8571429})$

In fancy language

- \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619..., 9.25635...) = |9.25619... - 9.25635...| = |-0.00016| <math>\leq \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$: Two rational numbers are close if many digits left of the decimal point coincide $d(\dots 85714.2, \dots 26714.2) = \|\dots 85714.2 - \dots 26714.2\|_{10} = \|\dots 59000\|_{10} = \frac{1}{10^3}$

- $\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{0}$ (17 = $\overline{0}$ 17), \mathbb{N} dense in \mathbb{Z}_{10} !
- $-\mathbb{N}\subseteq\mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{9}$ $(-17=\overline{9}83)$
- $\{n/d \in \mathbb{Q} \mid \gcd(d, 10) = 1\} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic $(3/7 = \overline{8571429})$
- $\mathbb{Q} \subseteq \mathbb{Q}_{10}$: digits ultimately periodic $(3/70 = \overline{857142}.9)$

In fancy language

- \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619..., 9.25635...) = |9.25619... - 9.25635...| = |-0.00016| <math>\leq \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$: Two rational numbers are close if many digits left of the decimal point coincide $d(\dots 85714.2, \dots 26714.2) = \|\dots 85714.2 - \dots 26714.2\|_{10} = \|\dots 59000\|_{10} = \frac{1}{10^3}$

- $\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{0}$ (17 = $\overline{0}$ 17), \mathbb{N} dense in \mathbb{Z}_{10} !
- $-\mathbb{N}\subseteq\mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{9}$ $(-17=\overline{9}83)$
- $\{n/d \in \mathbb{Q} \mid \gcd(d, 10) = 1\} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic $(3/7 = \overline{8571429})$
- $\mathbb{Q} \subseteq \mathbb{Q}_{10}$: digits ultimately periodic $(3/70 = \overline{857142}.9)$
- The modulo function generalizes to \mathbb{Z}_{10} for powers of 10: ... 357142 % $10^3 = 142$

In fancy language

- \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619..., 9.25635...) = |9.25619... - 9.25635...| = |-0.00016| <math>\leq \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$: Two rational numbers are close if many digits left of the decimal point coincide $d(\dots 85714.2, \dots 26714.2) = \|\dots 85714.2 - \dots 26714.2\|_{10} = \|\dots 59000\|_{10} = \frac{1}{10^3}$

- $\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{0}$ (17 = $\overline{0}$ 17), \mathbb{N} dense in \mathbb{Z}_{10} !
- $-\mathbb{N}\subseteq\mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{9}$ $(-17=\overline{9}83)$
- $\{n/d \in \mathbb{Q} \mid \gcd(d, 10) = 1\} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic $(3/7 = \overline{8571429})$
- $\mathbb{Q} \subseteq \mathbb{Q}_{10}$: digits ultimately periodic $(3/70 = \overline{857142}.9)$
- The modulo function generalizes to \mathbb{Z}_{10} for powers of 10: ... 357142 % $10^3 = 142$
- If $i := ... 3032431212 \in \mathbb{Z}_5$ then $i^2 = ... 1212 \cdot ... 1212$

In fancy language

- \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619..., 9.25635...) = |9.25619... - 9.25635...| = |-0.00016| <math>\leq \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$: Two rational numbers are close if many digits left of the decimal point coincide $d(\dots 85714.2, \dots 26714.2) = \|\dots 85714.2 - \dots 26714.2\|_{10} = \|\dots 59000\|_{10} = \frac{1}{10^3}$

- $\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{0}$ (17 = $\overline{0}$ 17), \mathbb{N} dense in \mathbb{Z}_{10} !
- $-\mathbb{N}\subseteq\mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{9}$ $(-17=\overline{9}83)$
- $\{n/d \in \mathbb{Q} \mid \gcd(d, 10) = 1\} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic $(3/7 = \overline{8571429})$
- $\mathbb{Q} \subseteq \mathbb{Q}_{10}$: digits ultimately periodic $(3/70 = \overline{857142}.9)$
- The modulo function generalizes to \mathbb{Z}_{10} for powers of 10: ... 357142 % $10^3 = 142$
- \bullet If $i:=\ldots 3032431212\in \mathbb{Z}_5$ then $\cfrac{i^2=\underline{\ldots 1212 \cdot \ldots 1212}}{\vdots}$ 1212

```
...1212
...2424
...1212
...2424
```

In fancy language

- \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619..., 9.25635...) = |9.25619... - 9.25635...| = |-0.00016| \le \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$: Two rational numbers are close if many digits left of the decimal point coincide $d(...85714.2,...26714.2) = ||...85714.2 - ...26714.2||_{10} = ||...59000||_{10} = \frac{1}{10^3}$

- $\mathbb{N} \subset \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{0}$ (17 = $\overline{0}$ 17), \mathbb{N} dense in \mathbb{Z}_{10} !
- $-\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{9}$ (-17 = $\overline{9}83$)
- $\{n/d \in \mathbb{Q} \mid \gcd(d,10) = 1\} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic $(3/7 = \overline{8571429})$
- $\mathbb{Q} \subset \mathbb{Q}_{10}$: digits ultimately periodic (3/70 = 857142.9)
- The modulo function generalizes to \mathbb{Z}_{10} for powers of 10: ... 357142 % $10^3 = 142$
- If $i := ... 3032431212 \in \mathbb{Z}_5$ then $i^2 = ... 1212 \cdot ... 1212$

```
...1212
...2424
 ...1212
 ...2424
 ...4444 = -1
```

A crash course in *p*-adic numbers

In fancy language

- \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|$: Two rational numbers are close if many digits right of the decimal point coincide $d(9.25619..., 9.25635...) = |9.25619... - 9.25635...| = |-0.00016| <math>\leq \frac{1}{10^3}$
- \mathbb{Q}_{10} is the completion of \mathbb{Q} with respect to $\|\cdot\|_{10}$ where $\|n\|_{10} = \frac{1}{10^{\nu_{10}(n)}}$: Two rational numbers are close if many digits left of the decimal point coincide $d(\dots 85714.2, \dots 26714.2) = \|\dots 85714.2 - \dots 26714.2\|_{10} = \|\dots 59000\|_{10} = \frac{1}{10^3}$

More facts on p-adic integers

- $\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{0}$ (17 = $\overline{0}$ 17), \mathbb{N} dense in \mathbb{Z}_{10} !
- $-\mathbb{N} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic with period $\overline{9}$ $(-17 = \overline{9}83)$
- $\{n/d \in \mathbb{Q} \mid \gcd(d, 10) = 1\} \subseteq \mathbb{Z}_{10}$: digits ultimately periodic $(3/7 = \overline{8571429})$
- $\mathbb{Q} \subseteq \mathbb{Q}_{10}$: digits ultimately periodic $(3/70 = \overline{857142}.9)$
- The modulo function generalizes to \mathbb{Z}_{10} for powers of 10: ...357142 % $10^3 = 142$
- If $i:=\ldots 3032431212\in\mathbb{Z}_5$ then $\emph{i}^2=\underbrace{\ldots 1212\cdot\ldots 1212}_{,}$ so $\underbrace{\{-1,1,-i,i\}\subseteq\mathbb{Z}_5}_{;}$ \vdots $\ldots 1212$ $\ldots 2424$
 - ...1212 ...2424 ...4444 = -

General idea

 Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)

General idea

- Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)
- Expansions are usually not chosen at random but follow certain rules

General idea

- Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)
- Expansions are usually not chosen at random but follow certain rules
- Most common way to define them: every new step of some iterative process fixes another digit of the expansion

General idea

- Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)
- Expansions are usually not chosen at random but follow certain rules
- Most common way to define them: every new step of some iterative process fixes another digit of the expansion

Example

$$n \mapsto \begin{cases} \frac{n-0}{10} & \text{if } n \equiv 0 \mod 10 \\ & \vdots \\ \frac{n-9}{10} & \text{if } n \equiv 9 \mod 10 \end{cases}$$

General idea

- Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)
- Expansions are usually not chosen at random but follow certain rules
- Most common way to define them: every new step of some iterative process fixes another digit of the expansion

Example

$$n \mapsto \begin{cases} \frac{n-0}{10} & \text{if } n \equiv 0 \mod 10 \\ & \vdots \\ \frac{n-9}{10} & \text{if } n \equiv 9 \mod 10 \end{cases}$$

$$n = \overline{02203}$$
 (= 2203 \in N):

General idea

- Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)
- Expansions are usually not chosen at random but follow certain rules
- Most common way to define them: every new step of some iterative process fixes another digit of the expansion

Example

$$n \mapsto \begin{cases} \frac{n-0}{10} & \text{if } n \equiv 0 \mod 10 \\ & \vdots \\ \frac{n-9}{10} & \text{if } n \equiv 9 \mod 10 \end{cases}$$

$$n = \overline{02203}$$
 (= 2203 $\in \mathbb{N}$): Orbit of n : ($\overline{0}2203, \overline{0}220, \overline{0}22, \overline{0}2, \overline{0}, \overline{0}, \ldots$)

General idea

- Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)
- Expansions are usually not chosen at random but follow certain rules
- Most common way to define them: every new step of some iterative process fixes another digit of the expansion

Example

$$n \mapsto \begin{cases} \frac{n-0}{10} & \text{if } n \equiv 0 \mod 10 \\ & \vdots \\ \frac{n-9}{10} & \text{if } n \equiv 9 \mod 10 \end{cases}$$

$$n = \overline{02203}$$
 (= 2203 \in N): Orbit of n : ($\overline{0}2203, \overline{0}220, \overline{0}22, \overline{0}2, \overline{0}, \overline{0}, \ldots$) Expansion of n : ($\overline{3}, 0, 2, 2, 0, 0, \ldots$)

General idea

- Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)
- Expansions are usually not chosen at random but follow certain rules
- Most common way to define them: every new step of some iterative process fixes
 another digit of the expansion

Example

$$n \mapsto \begin{cases} \frac{n-0}{10} & \text{if } n \equiv 0 \mod 10 \\ & \vdots \\ \frac{n-9}{10} & \text{if } n \equiv 9 \mod 10 \end{cases}$$

$$n = \overline{02203}$$
 (= 2203 \in N): Orbit of n : ($\overline{0}2203, \overline{0}220, \overline{0}22, \overline{0}2, \overline{0}, \overline{0}, ...$)
Expansion of n : (3,0,2,2,0,0,...)
 $n = \overline{95683}$ (= -4317 \in Z):

General idea

- Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)
- Expansions are usually not chosen at random but follow certain rules
- Most common way to define them: every new step of some iterative process fixes
 another digit of the expansion

Example

$$n \mapsto \begin{cases} \frac{n-0}{10} & \text{if } n \equiv 0 \mod 10 \\ & \vdots \\ \frac{n-9}{10} & \text{if } n \equiv 9 \mod 10 \end{cases}$$

$$n = \overline{02203} \ (= 2203 \in \mathbb{N}): \ \text{Orbit of } n: \ (\overline{0}2203, \overline{0}220, \overline{0}22, \overline{0}2, \overline{0}, \overline{0}, \ldots)$$
 Expansion of $n: \ (\overline{3}, 0, 2, 2, 0, 0, \ldots)$
$$n = \overline{95683} \ (= -4317 \in \mathbb{Z}): \ \text{Orbit of } n: \ (\overline{9}5683, \overline{9}568, \overline{9}56, \overline{9}5, \overline{9}, \overline{9}, \overline{9}, \ldots)$$

General idea

- Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)
- Expansions are usually not chosen at random but follow certain rules
- Most common way to define them: every new step of some iterative process fixes
 another digit of the expansion

Example

$$n \mapsto \begin{cases} \frac{n-0}{10} & \text{if } n \equiv 0 \mod 10 \\ & \vdots \\ \frac{n-9}{10} & \text{if } n \equiv 9 \mod 10 \end{cases}$$

```
n = \overline{02203} ( = 2203 \in N): Orbit of n: (\overline{0}2203, \overline{0}220, \overline{0}22, \overline{0}2, \overline{0}, \overline{0}, \ldots)

Expansion of n: (3, 0, 2, 2, 0, 0, ...)

n = \overline{95683} ( = -4317 \in Z): Orbit of n: (\overline{95683}, \overline{9568}, \overline{956}, \overline{95}, \overline{9}, \overline{9}, \overline{0}, \ldots)

Expansion of n: (3, 8, 6, 5, 9, 9, ...)
```

General idea

- Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)
- Expansions are usually not chosen at random but follow certain rules
- Most common way to define them: every new step of some iterative process fixes
 another digit of the expansion

Example

$$n \mapsto \begin{cases} \frac{n-0}{10} & \text{if } n \equiv 0 \mod 10 \\ & \vdots \\ \frac{n-9}{10} & \text{if } n \equiv 9 \mod 10 \end{cases}$$

$$n = \overline{02203}$$
 (= 2203 \in N): Orbit of n : ($\overline{0}2203, \overline{0}220, \overline{0}22, \overline{0}2, \overline{0}, \overline{0}, \ldots$)

Expansion of n : (3, 0, 2, 2, 0, 0, ...)

 $n = \overline{95683}$ (= -4317 \in Z): Orbit of n : ($\overline{95683}, \overline{9568}, \overline{956}, \overline{9}, \overline{9}, \overline{9}, \ldots$)

Expansion of n : (3, 8, 6, 5, 9, 9, ...)

 $n = \overline{8571429}$ (= 3/7 \in 0):

General idea

- Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)
- Expansions are usually not chosen at random but follow certain rules
- Most common way to define them: every new step of some iterative process fixes
 another digit of the expansion

Example

$$n \mapsto \begin{cases} \frac{n-0}{10} & \text{if } n \equiv 0 \mod 10 \\ & \vdots \\ \frac{n-9}{10} & \text{if } n \equiv 9 \mod 10 \end{cases}$$

$$\begin{array}{c} \left(\frac{n-9}{10} \quad \text{if } n \equiv 9 \mod 10 \\ \\ n = \overline{02203} \; (=2203 \in \mathbb{N}) \text{: Orbit of } n \text{: } (\overline{0}2203, \overline{0}220, \overline{0}22, \overline{0}2, \overline{0}, \overline{0}, \ldots) \\ \\ & \text{Expansion of } n \text{: } (\overline{3}, 0, 2, 2, 0, 0, \ldots) \\ \\ n = \overline{95683} \; (=-4317 \in \mathbb{Z}) \text{: Orbit of } n \text{: } (\overline{9}5683, \overline{9}568, \overline{9}56, \overline{9}5, \overline{9}, \overline{9}, \overline{9}, \ldots) \\ \\ & \text{Expansion of } n \text{: } (\overline{3}, 8, 6, 5, 9, 9, \ldots) \\ \\ n = \overline{8571429} \; (=3/7 \in \mathbb{Q}) \text{: Orbit of } n \text{: } (\overline{8571429}, \overline{857142}, \overline{285714}, \overline{428571}, \ldots) \\ \end{array}$$

General idea

- Represent any element x of some set X by a finite or infinite word (the (digit-)expansion of x) over some set of symbols (the digits)
- Expansions are usually not chosen at random but follow certain rules
- Most common way to define them: every new step of some iterative process fixes
 another digit of the expansion

Example

$$n \mapsto \begin{cases} \frac{n-0}{10} & \text{if } n \equiv 0 \mod 10 \\ & \vdots \\ \frac{n-9}{10} & \text{if } n \equiv 9 \mod 10 \end{cases}$$

Number system	Digit expansions

Number system	Digit expansions
$T_2: \mathbb{Z}_2 o \mathbb{Z}_2$ (standard base 2)	
$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$	

Number system	Digit expansions
$\frac{T_2}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2 \text{ (standard base 2)}$ $n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$	\mathbb{N} : period 0 - \mathbb{N} : period 1 \mathbb{Q} : periodic

Number system	Digit expansions
$\frac{T_2}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2 \text{ (standard base 2)}$ $n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$	\mathbb{N} : period 0 - \mathbb{N} : period 1 \mathbb{Q} : periodic
$ \frac{T_C}{n} : \mathbb{Z}_2 \to \mathbb{Z}_2 \text{ (Collatz)} $ $ n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases} $	

Number system	Digit expansions
$ \frac{T_2: \mathbb{Z}_2 \to \mathbb{Z}_2 \text{ (standard base 2)}}{n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}} $	\mathbb{N} : period 0 $-\mathbb{N}$: period 1 \mathbb{Q} : periodic
$ \frac{T_C}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2 \text{ (Collatz)} $ $ n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases} $	(conjecture) \mathbb{N} : period 10 $-\mathbb{N}$: periods 1, 110, or 11110111000 \mathbb{Q} : periodic

Number system	Digit expansions
$\frac{T_2}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2 \text{ (standard base 2)}$ $n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$	\mathbb{N} : period 0 $-\mathbb{N}$: period 1 \mathbb{Q} : periodic
$ \frac{T_C}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2 \text{ (Collatz)} $ $ n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases} $	(conjecture) \mathbb{N} : period 10 $-\mathbb{N}$: periods 1, 110, or 11110111000 \mathbb{Q} : periodic
$T_{a,b}: \mathbb{Z}_3 \to \mathbb{Z}_3 \text{ (non-standard ternary)}$ $n \mapsto \begin{cases} \frac{n}{3} & \text{if } n \equiv 0 \mod 3\\ \frac{n-a}{3} & \text{if } n \equiv 1 \mod 3\\ \frac{n-b}{3} & \text{if } n \equiv 2 \mod 3 \end{cases}$	

Number system	Digit expansions
$ \frac{T_2}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2 \text{ (standard base 2)} $ $ n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases} $	\mathbb{N} : period 0 - \mathbb{N} : period 1 \mathbb{Q} : periodic
$T_C: \mathbb{Z}_2 o \mathbb{Z}_2$ (Collatz) $n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$	(conjecture) \mathbb{N} : period 10 $-\mathbb{N}$: periods 1, 110, or 11110111000 \mathbb{Q} : periodic
$T_{a,b}: \mathbb{Z}_3 \to \mathbb{Z}_3 \text{ (non-standard ternary)}$ $n \mapsto \begin{cases} \frac{n}{3} & \text{if } n \equiv 0 \mod 3\\ \frac{n-a}{3} & \text{if } n \equiv 1 \mod 3\\ \frac{n-b}{3} & \text{if } n \equiv 2 \mod 3 \end{cases}$	$(a=1,\ b=-1)$: \mathbb{Z} : period 0 \mathbb{Q} : periodic

In short: A *p*-adic system is a number system on \mathbb{Z}_p which respects $\|\cdot\|_p$

In short: A p-adic system is a number system on \mathbb{Z}_p which respects $\|\cdot\|_p$

first k digits of expansions of m and n coincide $\Leftrightarrow m \equiv n \mod p^k$

Formal: Let $F = (F[0], \dots, F[p-1])$ with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define $F : \mathbb{Z}_p \to \mathbb{Z}_p$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_p \to \mathbb{Z}_p$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$

Examples:
$$T_{10} = (x, x, x, x, x, x, x, x, x, x)$$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_p \to \mathbb{Z}_p$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$
 Examples: $T_{10} = (x, x, x, x, x, x, x, x, x, x, x) \mid (x, \dots, x)(153) = 53$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_p \to \mathbb{Z}_p$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$

Examples:
$$T_{10} = (x, x, x, x, x, x, x, x, x, x) | (x, ..., x)(153) = 53$$

 $T_{2} = (x, x) = (x, x, -1)$

$$\frac{T_{10}}{T_{2}} = (x, x) = (x, x - 1)$$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_p \to \mathbb{Z}_p$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$

$$0 = (x, x, x) \mid (x, \dots, x)(153) = 1$$

Examples:
$$T_{10} = (x, x, x, x, x, x, x, x, x, x, x)$$

 $T_{2} = (x, x) = (x, x - 1)$ $(x, ..., x)(153) = 53$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_{p} \to \mathbb{Z}_{p}$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$

$$0 = (x, x, x, x, x, x, x, x, x, x, x) \mid (x, \dots, x)(153) = 0$$

Examples:
$$T_{10} = (x, x, x, x, x, x, x, x, x, x, x)$$
 $(x, ..., x)(153) = 53$ $T_{2} = (x, x)$ "=" $(x, x - 1)$ $(x, x)(17) = 8$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_p \to \mathbb{Z}_p$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$
Examples: $T_{10} = (x, x, x, x, x, x, x, x, x, x, x)$

$$T_2 = (x, x) "=" (x, x - 1)$$

$$T_C = (x, 3x + 1)$$
 $(x, x)(17) = 8$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_p \to \mathbb{Z}_p$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$
Examples: $T_{10} = (x, x, x, x, x, x, x, x, x, x, x)$

$$T_2 = (x, x) = (x, x - 1)$$

$$T_C = (x, 3x + 1)$$

$$(x, x)(17) = 8$$

$$(x, 3x + 1)(9) = 14$$

In short: A *p*-adic system is a number system on \mathbb{Z}_p which respects $\|\cdot\|_p$ first *k* digits of expansions of *m* and *n* coincide $\Leftrightarrow m \equiv n \mod p^k$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

 $F: \mathbb{Z}_p \to \mathbb{Z}_p$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n)\% p}{p}$$
Examples:
$$\frac{T_{10}}{T_2} = (x, x, x, x, x, x, x, x, x, x, x) | (x, ..., x)(153) = 53$$

$$\frac{T_2}{T_2} = (x, x) \text{ "=" } (x, x - 1) | (x, x)(17) = 8$$

$$\frac{T_C}{T_{a,b}} = (x, x - a, x - b) | (x, 3x + 1)(9) = 14$$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_{p} \to \mathbb{Z}_{p}$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$

$$0 = (x, x, x, x, x, x, x, x, x, x, x) \mid (x, \dots, x)(153)$$

Examples:
$$T_{10} = (x, x, x, x, x, x, x, x, x, x)$$
 $(x, ..., x)(153) = 53$
 $T_{2} = (x, x)$ "=" $(x, x - 1)$ $(x, x)(17) = 8$
 $T_{C} = (x, 3x + 1)$ $(x, 3x + 1)(9) = 14$
 $T_{a,b} = (x, x - a, x - b)$ $(x, x - 1, x + 1)(5) = 2$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_p \to \mathbb{Z}_p$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$

Examples:
$$T_{10} = (x, x, x, x, x, x, x, x, x, x)$$
 $(x, ..., x)(153) = 53$
 $T_{2} = (x, x)$ "=" $(x, x - 1)$ $(x, x)(17) = 8$
 $T_{C} = (x, 3x + 1)$ $(x, 3x + 1)(9) = 14$
 $T_{a,b} = (x, x - a, x - b)$ $(x, x - 1, x + 1)(5) = 2$

F-sequence of
$$n$$
: $S(F)[n] = (F^k(n))_{k \in \mathbb{N}_0}$

In short: A *p*-adic system is a number system on \mathbb{Z}_p which respects $\|\cdot\|_p$ first *k* digits of expansions of *m* and *n* coincide $\Leftrightarrow m \equiv n \mod p^k$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_p \to \mathbb{Z}_p$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$

Examples:
$$T_{10} = (x, x, x, x, x, x, x, x, x, x)$$
 $(x, ..., x)(153) = 53$
 $T_{2} = (x, x)$ "=" $(x, x - 1)$ $(x, x)(17) = 8$
 $T_{C} = (x, 3x + 1)$ $(x, 3x + 1)(9) = 14$
 $T_{a,b} = (x, x - a, x - b)$ $(x, x - 1, x + 1)(5) = 2$

F-sequence of
$$n$$
: $S(F)[n] = (F^k(n))_{k \in \mathbb{N}_0}$
F-(digit-)expansion of n : $D(F)[n] = (F^k(n) \% p)_{k \in \mathbb{N}_0}$

In short: A *p*-adic system is a number system on \mathbb{Z}_p which respects $\|\cdot\|_p$ first *k* digits of expansions of *m* and *n* coincide $\Leftrightarrow m \equiv n \mod p^k$

Formal: Let
$$F = (F[0], \dots, F[p-1])$$
 with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_p \to \mathbb{Z}_p$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$

Examples:
$$T_{10} = (x, x, x, x, x, x, x, x, x, x)$$
 $(x, ..., x)(153) = 53$
 $T_{2} = (x, x)$ "=" $(x, x - 1)$ $(x, x)(17) = 8$
 $T_{C} = (x, 3x + 1)$ $(x, 3x + 1)(9) = 14$
 $T_{a,b} = (x, x - a, x - b)$ $(x, x + 1)(5) = 2$

F-sequence of n: $S(F)[n] = (F^k(n))_{k \in \mathbb{N}_0}$ F-(digit-)expansion of n: $D(F)[n] = (F^k(n) \% p)_{k \in \mathbb{N}_0}$ Examples: $S(T_C)[17] = (17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 2, 1, \ldots)$

In short: A *p*-adic system is a number system on \mathbb{Z}_p which respects $\|\cdot\|_p$ first *k* digits of expansions of *m* and *n* coincide $\Leftrightarrow m \equiv n \mod p^k$

Formal: Let $F = (F[0], \dots, F[p-1])$ with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_p \to \mathbb{Z}_p$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$

Examples:
$$T_{10} = (x, x, x, x, x, x, x, x, x, x)$$
 $(x, ..., x)(153) = 53$
 $T_{2} = (x, x)$ "=" $(x, x - 1)$ $(x, x)(17) = 8$
 $T_{C} = (x, 3x + 1)$ $(x, 3x + 1)(9) = 14$
 $T_{a,b} = (x, x - a, x - b)$ $(x, x + 1)(5) = 2$

F-sequence of n: $S(F)[n] = (F^k(n))_{k \in \mathbb{N}_0}$ F-(digit-)expansion of n: $D(F)[n] = (F^k(n) \% p)_{k \in \mathbb{N}_0}$

Examples:
$$S(T_C)[17] = (17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 2, 1, ...)$$

 $D(T_C)[17] = (1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, ...)$

In short: A *p*-adic system is a number system on \mathbb{Z}_p which respects $\|\cdot\|_p$ first *k* digits of expansions of *m* and *n* coincide $\Leftrightarrow m \equiv n \mod p^k$

Formal: Let $F = (F[0], \dots, F[p-1])$ with $F[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ and define

$$F: \mathbb{Z}_p \to \mathbb{Z}_p$$

$$n \mapsto \frac{F[n \% p](n) - F[n \% p](n) \% p}{p}$$

Examples:
$$T_{10} = (x, x, x, x, x, x, x, x, x, x)$$
 $(x, ..., x)(153) = 53$
 $T_{2} = (x, x)$ "=" $(x, x - 1)$ $(x, x)(17) = 8$
 $T_{C} = (x, 3x + 1)$ $(x, 3x + 1)(9) = 14$
 $T_{a,b} = (x, x - a, x - b)$ $(x, x - 1, x + 1)(5) = 2$

F-sequence of n: $S(F)[n] = (F^k(n))_{k \in \mathbb{N}_0}$ F-(digit-)expansion of n: $D(F)[n] = (F^k(n) \% p)_{k \in \mathbb{N}_0}$

Examples: $S(T_C)[17] = (17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 2, 1, ...)$ $D(T_C)[17] = (1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, ...)$

F is called a p-adic system if for all $m, n \in \mathbb{Z}_p$ and $k \in \mathbb{N}$ $D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$

$$F = (F[0], \dots, F[p-1]) : \mathbb{Z}_p \to \mathbb{Z}_p, \quad n \mapsto \left(F[n \% p](n) - \underline{F[n \% p](n) \% p} \right) / p$$

$$F \text{ is called a } p\text{-adic system if } D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$$

 $\frac{F}{F} = (F[0], \dots, F[p-1]) : \frac{\mathbb{Z}_p \to \mathbb{Z}_p}{\mathbb{Z}_p}, \quad n \mapsto \left(F[n \% p](n) - \underbrace{F[n \% p](n) \% p}\right)/p$ $F \text{ is called a } \underbrace{p\text{-adic system}} \text{ if } \underbrace{D(F)[m][0, k-1] = D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k$

$$\frac{F}{F} = (F[0], \dots, F[p-1]) : \frac{\mathbb{Z}_p \to \mathbb{Z}_p}{\mathbb{Z}_p}, \quad n \mapsto \left(F[n \% p](n) - \frac{F[n \% - p](n) \% p}{\mathbb{Z}_p}\right) / p$$

F is called a p-adic system if $D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$

$$S(F) \in \left(\mathbb{Z}_p^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$
F-sequence table

$$\overline{F} = (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \left(F[n \% p](n) - \underline{F[n \% p](n) \% p}\right)/p$$

F is called a p-adic system if $D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$

$$S(F) \in \left(\mathbb{Z}_p^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$
F-sequence table

$$\frac{\mathbf{F}}{} = (F[0], \dots, F[p-1]) : \frac{\mathbb{Z}_p \to \mathbb{Z}_p}{}, \quad n \mapsto \left(F[n \% p](n) - \frac{F[n \% p](n) \% p}{} \right) / p$$

F is called a p-adic system if $D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$

$$S(F) \in \left(\mathbb{Z}_p^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$

F-sequence table

$$D(F) \in \left(\{0,\ldots,p-1\}^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$

F-digit table

$$\frac{\mathbf{F}}{} = (F[0], \dots, F[p-1]) : \frac{\mathbb{Z}_p \to \mathbb{Z}_p}{}, \quad n \mapsto \left(F[n \% p](n) - \frac{F[n \% p](n) \% p}{}\right) / p$$

F is called a p-adic system if $D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$

$$D(F) \in \left(\{0,\ldots,p-1\}^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$

F-digit table

10 11

13

14

15 16

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} &= \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Properties of p-adic systems

• D(F) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$:

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} &= \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Properties of p-adic systems

• D(F) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- D(F) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers:

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- D(F) defines a bijection between \mathbb{Z}_p and $\{0, \dots, p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0, k-1] = D(F)(n\% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- D(F) defines a bijection between \mathbb{Z}_p and $\{0, \dots, p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0,k-1] = D(F)(n\% p^k)[0,k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)
- The sets of *p*-digit tables and *p*-adic systems are in one-to-one correspondence:

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- D(F) defines a bijection between \mathbb{Z}_p and $\{0, \dots, p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0, k-1] = D(F)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)
- The sets of p-digit tables and p-adic systems are in one-to-one correspondence: if $D \in \left(\{0,\dots,p-1\}^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$ with

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- D(F) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0, k-1] = D(F)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)
- The sets of *p*-digit tables and *p*-adic systems are in one-to-one correspondence:

if
$$D \in \left(\{0,\ldots,p-1\}^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$
 with $\circ D[n][0] = n\,\%\,p$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- D(F) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0, k-1] = D(F)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)
- The sets of p-digit tables and p-adic systems are in one-to-one correspondence:

if
$$D \in \left(\{0,\dots,p-1\}^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$
 with $D[n][0] = n\% n$

$$\circ D[n][0] = n \% p$$

$$\circ D[m][0,k-1] = D[n][0,k-1] \Leftrightarrow m \equiv n \mod p^k,$$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Properties of p-adic systems

- D(F) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0, k-1] = D(F)(n\%p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)
- The sets of *p*-digit tables and *p*-adic systems are in one-to-one correspondence:

if
$$D \in \left(\{0,\ldots,p-1\}^{\mathbb{N}_0}
ight)^{\mathbb{Z}_p}$$
 with $\circ D[n][0] = n\,\%\,p$

∘ $D[m][0, k-1] = D[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$, then D = D(F) for a "unique" p-adic system F

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Properties of p-adic systems

- D(F) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0, k-1] = D(F)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)
- The sets of *p*-digit tables and *p*-adic systems are in one-to-one correspondence:

if
$$D \in \left(\{0,\dots,p-1\}^{\mathbb{N}_0}
ight)^{\mathbb{Z}_p}$$
 with

$$\circ D[n][0] = n \% p$$

$$\circ D[m][0, k-1] = D[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k,$$

then D = D(F) for a "unique" p-adic system $F(F(m) = n \Leftrightarrow D[m][1, \infty] = D[n])$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Properties of p-adic systems

- D(F) defines a bijection between \mathbb{Z}_p and $\{0, \dots, p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0, k-1] = D(F)(n\% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)
- The sets of *p*-digit tables and *p*-adic systems are in one-to-one correspondence:

if
$$D \in \left(\{0,\ldots,p-1\}^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$
 with

- $\circ D[n][0] = n \% p$
- $\circ D[m][0,k-1] = D[n][0,k-1] \Leftrightarrow m \equiv n \mod p^k,$

then D = D(F) for a "unique" p-adic system $F(F(m) = n \Leftrightarrow D[m][1, \infty] = D[n])$

• Assume w.l.o.g. that $F[r](n) \equiv 0 \mod p$ for all $n \equiv r \mod p$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Properties of p-adic systems

- D(F) defines a bijection between \mathbb{Z}_p and $\{0, \dots, p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0, k-1] = D(F)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)
- The sets of *p*-digit tables and *p*-adic systems are in one-to-one correspondence:

if
$$D \in \left(\left\{0,\ldots,p-1\right\}^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$
 with

$$\circ D[n][0] = n \% p$$

$$\circ D[m][0,k-1] = D[n][0,k-1] \Leftrightarrow m \equiv n \mod p^k,$$

then D = D(F) for a "unique" p-adic system $F(F(m) = n \Leftrightarrow D[m][1, \infty] = D[n])$

• Assume w.l.o.g. that $F[r](n) \equiv 0 \mod p$ for all $n \equiv r \mod p$ Then, F is a p-adic system if and only if F[r] is (p, r)-suitable for all $0 \le r \le p-1$:

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Properties of p-adic systems

- D(F) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0, k-1] = D(F)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)
- The sets of *p*-digit tables and *p*-adic systems are in one-to-one correspondence:

if
$$D \in \left(\left\{0,\ldots,p-1\right\}^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$
 with

$$\circ D[n][0] = n \% p$$

$$\circ D[m][0,k-1] = D[n][0,k-1] \Leftrightarrow m \equiv n \mod p^k,$$

then
$$D = D(F)$$
 for a "unique" p -adic system $F(F(m) = n \Leftrightarrow D[m][1, \infty] = D[n])$

• Assume w.l.o.g. that $F[r](n) \equiv 0 \mod p$ for all $n \equiv r \mod p$ Then, F is a p-adic system if and only if F[r] is (p, r)-suitable for all $0 \le r \le p - 1$: $F[r](m) \equiv F[r](n) \mod p^k \Leftrightarrow m \equiv n \mod p^k$ for all $m \equiv n \equiv r \mod p$, $k \in \mathbb{N}$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \underline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Properties of p-adic systems

- D(F) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0, k-1] = D(F)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)
- The sets of *p*-digit tables and *p*-adic systems are in one-to-one correspondence:

if
$$D \in \left(\{0,\dots,p-1\}^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$
 with

$$\circ D[n][0] = n \% p$$

$$\circ D[m][0,k-1] = D[n][0,k-1] \Leftrightarrow m \equiv n \mod p^k,$$

then
$$D = D(F)$$
 for a "unique" p -adic system $F(F(m) = n \Leftrightarrow D[m][1, \infty] = D[n])$

• Assume w.l.o.g. that $F[r](n) \equiv 0 \mod p$ for all $n \equiv r \mod p$ Then, F is a p-adic system if and only if F[r] is (p, r)-suitable for all $0 \le r \le p-1$: $F[r](m) \equiv F[r](n) \mod p^k \Leftrightarrow m \equiv n \mod p^k$ for all $m \equiv n \equiv r \mod p$, $k \in \mathbb{N}$ Special case: If $F[r] = \sum_{i=0}^d a_i x^i \in \mathbb{Z}_p[x]$ is a polynomial, then

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Properties of p-adic systems

- D(F) defines a bijection between \mathbb{Z}_p and $\{0, \dots, p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0, k-1] = D(F)(n\%p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)
- The sets of *p*-digit tables and *p*-adic systems are in one-to-one correspondence:

if
$$D \in \left(\{0,\dots,p-1\}^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$
 with

$$\circ D[n][0] = n \% p$$

$$\circ D[m][0,k-1] = D[n][0,k-1] \Leftrightarrow m \equiv n \mod p^k,$$

then
$$D = D(F)$$
 for a "unique" p -adic system $F(F(m) = n \Leftrightarrow D[m][1, \infty] = D[n])$

• Assume w.l.o.g. that $F[r](n) \equiv 0 \mod p$ for all $n \equiv r \mod p$ Then, F is a p-adic system if and only if F[r] is (p,r)-suitable for all $0 \le r \le p-1$: $F[r](m) \equiv F[r](n) \mod p^k \Leftrightarrow m \equiv n \mod p^k$ for all $m \equiv n \equiv r \mod p$, $k \in \mathbb{N}$ Special case: If $F[r] = \sum_{i=0}^d a_i x^i \in \mathbb{Z}_p[x]$ is a polynomial, then

$$F[r]$$
 is (p,r) -suitable $\Leftrightarrow \gcd\left(p,\sum_{i=1}^{d}(a_i\%p)ir^{i-1}\right)=1$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Properties of p-adic systems

- D(F) defines a bijection between \mathbb{Z}_p and $\{0, \dots, p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs
- D(F) is uniquely determined by the expansions of the natural numbers: $D(F)(n)[0, k-1] = D(F)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p)
- The sets of *p*-digit tables and *p*-adic systems are in one-to-one correspondence:

if
$$D \in \left(\left\{0,\ldots,p-1\right\}^{\mathbb{N}_0}\right)^{\mathbb{Z}_p}$$
 with

$$\circ D[n][0] = n \% p$$

$$\circ D[m][0,k-1] = D[n][0,k-1] \Leftrightarrow m \equiv n \mod p^k,$$

then
$$D = D(F)$$
 for a "unique" p -adic system $F(F(m) = n \Leftrightarrow D[m][1, \infty] = D[n])$

• Assume w.l.o.g. that $F[r](n) \equiv 0 \mod p$ for all $n \equiv r \mod p$ Then, F is a p-adic system if and only if F[r] is (p, r)-suitable for all $0 \le r \le p-1$: $F[r](m) \equiv F[r](n) \mod p^k \Leftrightarrow m \equiv n \mod p^k$ for all $m \equiv n \equiv r \mod p$, $k \in \mathbb{N}$ Special case: If $F[r] = \sum_{i=0}^d a_i x^i \in \mathbb{Z}_p[x]$ is a polynomial, then

$$F[r]$$
 is (p, r) -suitable $\Leftrightarrow \gcd\left(p, \sum_{i=1}^{d} (a_i \% p) i r^{i-1}\right) = 1$

One can always make F[r] (p, r)-suitable by only changing a_1

$$F = (F[0], \dots, F[p-1]) : \frac{\mathbb{Z}_p \to \mathbb{Z}_p}{p}, \quad n \mapsto \left(F[n \% p](n) - F[n \% p](n) \% p\right)/p$$

F is called a p-adic system if $D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$

•
$$T_n = (x, ..., x), T_C = (x, 3x + 1), T_{a,b} = (x, x - a, x - b)$$

: 1 2 3 4 5 6 7 8	1 2 3 4 5 6 7 8	: 2 1 5 2 8 3 11 4	1 2 8 1 4 5 17 2			1 2 3 4 5 6 7 8	1 0 1 0 1 0	0 1 1 0 0 1 1 1 0	1 0 0 1 0 1 1 1	
:	:	:	:	٠		:	:	:	:	٠
$S(T_C)$	0	1	2		L	$O(T_C)$	0	1	2	• • • •

$$F = (F[0], \dots, F[p-1]) : \mathbb{Z}_p \to \mathbb{Z}_p, \quad n \mapsto \left(F[n\%p](n) - F[n\%p](n)\%p\right)/p$$

F is called a p-adic system if $D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$

•
$$T_n = (x, ..., x), T_C = (x, 3x + 1), T_{a,b} = (x, x - a, x - b)$$

•
$$(7x^3 - 4x^2 + x - 6, 3x^7 - x + 1, x^2 + 6x + 2), (\frac{32}{7}x^2 + \frac{11}{3}x - 4, \frac{13}{11}x + 5)$$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a p-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- $T_n = (x, ..., x), T_C = (x, 3x + 1), T_{a,b} = (x, x a, x b)$
- $(7x^3 4x^2 + x 6, 3x^7 x + 1, x^2 + 6x + 2), (\frac{32}{7}x^2 + \frac{11}{3}x 4, \frac{13}{11}x + 5)$
- $(ix^2 6x + 5i, x, x, x, x)$ where $i^2 = -1$, i.e. i = ... 31212 or i = ... 13233

$$F = (F[0], \dots, F[p-1]) : \mathbb{Z}_p \to \mathbb{Z}_p, \quad n \mapsto \Big(F[n \% p](n) - F[n \% p](n) \% p\Big)/p$$

$$F \text{ is called a } p\text{-adic system if } \frac{D(F)[m][0, k-1]}{D(F)[m][0, k-1]} = \frac{D(F)[n][0, k-1]}{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k$$

- $T_n = (x, ..., x), T_C = (x, 3x + 1), T_{a,b} = (x, x a, x b)$
- $(7x^3 4x^2 + x 6, 3x^7 x + 1, x^2 + 6x + 2), (\frac{32}{7}x^2 + \frac{11}{3}x 4, \frac{13}{11}x + 5)$
- $(ix^2 6x + 5i, x, x, x, x)$ where $i^2 = -1$, i.e. i = ... 31212 or i = ... 13233
- If $P \in \mathbb{Z}[x]$ is a p-permutation polynomial $(P : \mathbb{Z}/p^k\mathbb{Z} \to \mathbb{Z}/p^k\mathbb{Z}$ bijective for all $k \in \mathbb{N})$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- $T_n = (x, ..., x), T_C = (x, 3x + 1), T_{a,b} = (x, x a, x b)$
- $(7x^3 4x^2 + x 6, 3x^7 x + 1, x^2 + 6x + 2), (\frac{32}{7}x^2 + \frac{11}{3}x 4, \frac{13}{11}x + 5)$
- $(ix^2 6x + 5i, x, x, x, x)$ where $i^2 = -1$, i.e. i = ... 31212 or i = ... 13233
- If $P \in \mathbb{Z}[x]$ is a p-permutation polynomial $(P : \mathbb{Z}/p^k\mathbb{Z} \to \mathbb{Z}/p^k\mathbb{Z})$ bijective for all $k \in \mathbb{N}$) and $P : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ is the identity function,

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- $T_n = (x, ..., x), T_C = (x, 3x + 1), T_{a,b} = (x, x a, x b)$
- $(7x^3 4x^2 + x 6, 3x^7 x + 1, x^2 + 6x + 2), (\frac{32}{7}x^2 + \frac{11}{3}x 4, \frac{13}{11}x + 5)$
- $(ix^2 6x + 5i, x, x, x, x)$ where $i^2 = -1$, i.e. i = ... 31212 or i = ... 13233
- If $P \in \mathbb{Z}[x]$ is a p-permutation polynomial $(P : \mathbb{Z}/p^k\mathbb{Z} \to \mathbb{Z}/p^k\mathbb{Z}$ bijective for all $k \in \mathbb{N})$ and $P : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ is the identity function,
 - then $D(P) := (D(T_p)[P(n)])_{n \in \mathbb{Z}_p}$ defines a digit-table and thus a p-adic system

$$\overline{F} = (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p} \to \overline{\mathbb{Z}_p}, \quad n \mapsto \left(F[n \% p](n) - F[n \% p](n) \% p\right)/p$$

$$F \text{ is called a } p\text{-adic system if } D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$$

More examples

- $T_n = (x, ..., x), T_C = (x, 3x + 1), T_{a,b} = (x, x a, x b)$
- $(7x^3 4x^2 + x 6, 3x^7 x + 1, x^2 + 6x + 2), (\frac{32}{7}x^2 + \frac{11}{3}x 4, \frac{13}{11}x + 5)$
- $(ix^2 6x + 5i, x, x, x, x)$ where $i^2 = -1$, i.e. i = ...31212 or i = ...13233
- If $P \in \mathbb{Z}[x]$ is a p-permutation polynomial $(P : \mathbb{Z}/p^k\mathbb{Z} \to \mathbb{Z}/p^k\mathbb{Z}$ bijective for all $k \in \mathbb{N})$ and $P : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ is the identity function,

then $D(P) := (D(T_p)[P(n)])_{n \in \mathbb{Z}_p}$ defines a digit-table and thus a $\frac{p\text{-adic system}}{p\text{-adic system}}$ Example: $P(x) = 10x^2 - 3x + 4$ is a 2-permutation polynomial

1 2 3 4 5 6 7 8	11 38 85 152 239 346 473 620	1 2 3 4 5 6 7 8	1 0 1 0 1 0 1 0	1 1 0 0 1 1 0 0	0 1 1 0 1 0 0 1	
:	:	:	:	:	:	٠
P		O(P)	0	1	2	

$$\begin{split} & \overline{F} = (F[0], \dots, F[p-1]) : \underline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p}\Big)/p \\ & F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Obligatory proof

$$\begin{aligned} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } D(F)[m][0, k-1] &= D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{aligned}$$

Obligatory proof

Lemma: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

$$F = (F[0], \dots, F[p-1]) : \mathbb{Z}_p \to \mathbb{Z}_p, \quad n \mapsto \Big(F[n \% p](n) - F[n \% p](n) \% p\Big)/p$$

$$F \text{ is called a } p\text{-adic system if } \frac{D(F)[m][0, k-1]}{D(F)[m][0, k-1]} = \frac{D(F)[n][0, k-1]}{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p,r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

$$\begin{split} & \overline{F} = (F[0], \dots, F[p-1]) : \underline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p}\Big)/p \\ & F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$,

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

$$\frac{F}{F} = (F[0], \dots, F[p-1]) : \frac{\mathbb{Z}_p \to \mathbb{Z}_p}{\mathbb{Z}_p}, \quad n \mapsto \left(F[n \% p](n) - \underbrace{F[n \% p](n) \% p}\right)/p$$
F is called a p-adic system if $D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

Proof: Let
$$F := (x, \dots, x, f(x) + px, x, \dots, x)$$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

Proof: Let
$$F := (x, ..., x, f(x) + px, x, ..., x)$$

 F is a p-adic system

$$\begin{aligned} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{aligned}$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

Proof: Let
$$F := (x, ..., x, f(x) + px, x, ..., x)$$

F is a p-adic system

There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(F)[z] = (r, r, r, \ldots)$.

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

Proof: Let
$$F := (x, \dots, x, f(x) + px, x, \dots, x)$$

F is a p-adic system

There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(F)[z] = (r, r, r, \ldots)$.

Note: S(F)[n] ultimately periodic $\Leftrightarrow D(F)[n]$ ultimately periodic

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

Proof: Let
$$F := (x, \dots, x, f(x) + px, x, \dots, x)$$

F is a p-adic system

There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(F)[z] = (r, r, r, \ldots)$.

Note: S(F)[n] ultimately periodic $\Leftrightarrow D(F)[n]$ ultimately periodic lengths of initial parts and periods are equal

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

Proof: Let
$$F := (x, \dots, x, f(x) + px, x, \dots, x)$$

F is a p-adic system

There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(F)[z] = (r, r, r, \ldots)$.

Note: S(F)[n] ultimately periodic $\Leftrightarrow D(F)[n]$ ultimately periodic lengths of initial parts and periods are equal

So,
$$z = F(z)$$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

Proof: Let
$$F := (x, \dots, x, f(x) + px, x, \dots, x)$$

F is a p-adic system

There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(F)[z] = (r, r, r, \ldots)$.

Note: S(F)[n] ultimately periodic $\Leftrightarrow D(F)[n]$ ultimately periodic lengths of initial parts and periods are equal

So,
$$z = F(z) = F[r](z)/p$$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

Proof: Let
$$F := (x, \dots, x, f(x) + px, x, \dots, x)$$

F is a p-adic system

There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(F)[z] = (r, r, r, \ldots)$.

Note: S(F)[n] ultimately periodic $\Leftrightarrow D(F)[n]$ ultimately periodic

lengths of initial parts and periods are equal

So,
$$z = F(z) = F[r](z)/p = \frac{(f(z) + pz)/p}{(z)}$$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

Proof: Let
$$F := (x, \dots, x, f(x) + px, x, \dots, x)$$

F is a p-adic system

There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(F)[z] = (r, r, r, \ldots)$.

Note: S(F)[n] ultimately periodic $\Leftrightarrow D(F)[n]$ ultimately periodic

lengths of initial parts and periods are equal

So,
$$z = F(z) = F[r](z)/p = \frac{(f(z) + pz)/p}{p}$$
, hence $\frac{f(z) = 0}{p}$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

Proof: Let
$$F := (x, \dots, x, f(x) + px, x, \dots, x)$$

F is a p-adic system

There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(F)[z] = (r, r, r, \ldots)$.

Note: S(F)[n] ultimately periodic $\Leftrightarrow D(F)[n]$ ultimately periodic

lengths of initial parts and periods are equal

So,
$$\frac{z}{z} = F(z) = F[r](z)/p = \frac{(f(z) + pz)/p}{p}$$
, hence $\frac{f(z) = 0}{p}$

Corollary: If $P \in \mathbb{Z}_p[x]$ with $P(r) \equiv 0 \mod p$ and $\gcd(p, P'(r)) = 1$, then P has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

$$\overline{F} = (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \left(F[n \% p](n) - F[n \% p](n) \% p\right)/p$$

$$F \text{ is called a } p\text{-adic system if } D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$$

Obligatory proof

Lemma: If
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 is (p, r) -suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$

Remember:
$$f(p, r)$$
-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$
 $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system

Theorem: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$

Proof: Let
$$F := (x, \dots, x, f(x) + px, x, \dots, x)$$

F is a p-adic system

There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(F)[z] = (r, r, r, \ldots)$.

Note: S(F)[n] ultimately periodic $\Leftrightarrow D(F)[n]$ ultimately periodic

lengths of initial parts and periods are equal

So,
$$z = F(z) = F[r](z)/p = \frac{(f(z) + pz)/p}{p}$$
, hence $\frac{f(z) = 0}{p}$

Corollary: If $P \in \mathbb{Z}_p[x]$ with $P(r) \equiv 0 \mod p$ and $\gcd(p, P'(r)) = 1$, then P has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ (Hensel's Lemma!)

$$F = (F[0], \dots, F[p-1]) : \mathbb{Z}_p \to \mathbb{Z}_p, \quad n \mapsto \left(F[n \% p](n) - F[n \% p](n) \% p \right) / p$$

$$F \text{ is called a } p\text{-adic system if } \frac{D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k}{T_C = (x, 3x + 1)}$$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \,\%\, p](n) - \underline{F[n \,\%\, p](n) \,\%\, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}$$

$T_C = (x, 3x + 1)$

Known periods on $\ensuremath{\mathbb{Z}}$

Digit period $(D(T_C))$	Sequence period $(S(T_C))$
0	0
1,0	1,2
1	-1
1, 1, 0	-5, -7, -10
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0	-17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34

$$\overline{F} = (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \left(F[n \% p](n) - \underline{F[n \% p](n) \% p}\right)/p$$

F is called a p-adic system if $D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$

$$T_C = (x, 3x + 1)$$

Known periods on \mathbb{Z}

Digit period $(D(T_C))$	Sequence period $(S(T_C))$
0	0
1,0	1,2
1	-1
1, 1, 0	-5, -7, -10
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0	-17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34

Periods on Q

Every ultimately periodic digit expansion represents a rational number

$$\overline{F} = (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \left(F[n \% p](n) - \underline{F[n \% p](n) \% p}\right)/p$$

F is called a p-adic system if $D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$

$$T_C = (x, 3x + 1)$$

Known periods on \mathbb{Z}

Digit period $(D(T_C))$	Sequence period $(S(T_C))$
0	0
1,0	1,2
1	-1
1, 1, 0	-5, -7, -10
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0	-17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34

Periods on Q

Every ultimately periodic digit expansion represents a rational number

The rational number can be effectively computed from a given expansion

$$F = (F[0], \dots, F[p-1]) : \mathbb{Z}_p \to \mathbb{Z}_p, \quad n \mapsto \left(F[n\%p](n) - F[n\%p](n)\%p\right)/p$$

F is called a p-adic system if $D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$

$$T_C = (x, 3x + 1)$$

Known periods on $\ensuremath{\mathbb{Z}}$

Digit period $(D(T_C))$	Sequence period $(S(T_C))$
0	0
1,0	1,2
1	-1
1, 1, 0	-5, -7, -10
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0	-17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34

Periods on Q

Every ultimately periodic digit expansion represents a rational number

The rational number can be effectively computed from a given expansion

$$(1,0,0,1) \longrightarrow (11/7,20/7,10/7,5/7)$$

$$\overline{F} = (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \left(F[n \% p](n) - F[n \% p](n) \% p\right)/p$$

$$F \text{ is called a } p\text{-adic system if } D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$$

$$T_C = (x, 3x + 1)$$

Known periods on \mathbb{Z}

Digit period $(D(T_C))$	Sequence period $(S(T_C))$
0	0
1,0	1,2
1	-1
1, 1, 0	-5, -7, -10
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0	-17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34

Periods on Q

Every ultimately periodic digit expansion represents a rational number

The rational number can be effectively computed from a given expansion

$$(1,0,0,1) \longrightarrow (11/7,20/7,10/7,5/7)$$

Open questions

• Do expansions of the integers admit other periods?

$$F = (F[0], \dots, F[p-1]) : \mathbb{Z}_p \to \mathbb{Z}_p, \quad n \mapsto \left(F[n \% p](n) - F[n \% p](n) \% p\right)/p$$

$$F \text{ is called a } p\text{-adic system if } D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$$

$$T_C = (x, 3x + 1)$$

Known periods on \mathbb{Z}

Digit period $(D(T_C))$	Sequence period $(S(T_C))$
0	0
1,0	1,2
1	-1
1, 1, 0	-5, -7, -10
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0	-17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34

Periods on Q

Every ultimately periodic digit expansion represents a rational number

The rational number can be effectively computed from a given expansion

$$(1,0,0,1) \longrightarrow (11/7,20/7,10/7,5/7)$$

Open questions

- Do expansions of the integers admit other periods?
- Are there rational numbers that have aperiodic expansions?

$$F = (F[0], \dots, F[p-1]) : \mathbb{Z}_p \to \mathbb{Z}_p, \quad n \mapsto \left(F[n \% p](n) - F[n \% p](n) \% p\right)/p$$

$$F \text{ is called a } p\text{-adic system if } D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$$

$$T_C = (x, 3x + 1)$$

Known periods on \mathbb{Z}

Digit period $(D(T_C))$	Sequence period $(S(T_C))$
0	0
1,0	1,2
1	-1
1, 1, 0	-5, -7, -10
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0	-17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34

Periods on Q

Every ultimately periodic digit expansion represents a rational number

The rational number can be effectively computed from a given expansion

$$(1,0,0,1) \longrightarrow (11/7,20/7,10/7,5/7)$$

Open questions

- Do expansions of the integers admit other periods?
- Are there rational numbers that have aperiodic expansions?
- Interesting example: D((5x+2,5x+1))[n] aperiodic for all $n \in \mathbb{Z}$ (expanding on \mathbb{Z})

$$\overline{F} = (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \left(F[n \% p](n) - \underline{F[n \% p](n) \% p}\right)/p$$

F is called a p-adic system if $D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k$

$$T_C = (x, 3x + 1)$$

Known periods on \mathbb{Z}

Digit period $(D(T_C))$	Sequence period $(S(T_C))$
0	0
1,0	1,2
1	-1
1, 1, 0	-5, -7, -10
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0	-17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34

Periods on Q

Every ultimately periodic digit expansion represents a rational number

The rational number can be effectively computed from a given expansion

$$(1,0,0,1) \longrightarrow (11/7,20/7,10/7,5/7)$$

Open questions

- Do expansions of the integers admit other periods?
- Are there rational numbers that have aperiodic expansions?
- Interesting example: D((5x + 2, 5x + 1))[n] aperiodic for all $n \in \mathbb{Z}$ (expanding on \mathbb{Z}) Remember: S(F)[n] ultimately periodic $\Leftrightarrow D(F)[n]$ ultimately periodic


```
\begin{split} & \overline{F} = (F[0], \dots, F[p-1]) : \underline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p}\Big) / p \\ & F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{split}
```

• There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions
- There is a *p*-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions
- There is a *p*-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods

$$F = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), \ a_i, b_i \in \mathbb{Z}$$

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions
- There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods

For p-adic systems defined by linear polynomials with integer coefficients:

$$F = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), a_i, b_i \in \mathbb{Z}$$

• Every ultimately periodic expansion comes from a rational number

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions
- There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods

$$F = (a_0 + b_0 \times, \dots, a_{p-1} + b_{p-1} \times), \ a_i, b_i \in \mathbb{Z}$$

- Every ultimately periodic expansion comes from a rational number
- Conjectures:

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions
- There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods

$$F = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), a_i, b_i \in \mathbb{Z}$$

- Every ultimately periodic expansion comes from a rational number
- Conjectures:
 - o All rational numbers have ultimately periodic expansions $\Leftrightarrow b_0 \cdots b_{p-1} < p^p$

$$\frac{F}{F} = (F[0], \dots, F[p-1]) : \frac{\mathbb{Z}_p \to \mathbb{Z}_p}{\mathbb{Z}_p}, \quad n \mapsto \left(F[n \% p](n) - \underbrace{F[n \% p](n) \% p}\right)/p$$

$$F \text{ is called a } p\text{-adic system if } \frac{D(F)[m][0, k-1] = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k}{\mathbb{Z}_p}$$

- There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions
- There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods

$$F = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), a_i, b_i \in \mathbb{Z}$$

- Every ultimately periodic expansion comes from a rational number
- Conjectures:
 - o All rational numbers have ultimately periodic expansions $\Leftrightarrow b_0 \cdots b_{p-1} < p^p$
 - Expansions of integers admit only finitely many different periods

$$\begin{split} \overline{F} &= (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% \, p](n) - \underline{F[n \% \, p](n) \% \, p} \Big) / p \\ F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{split}$$

- There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions
- There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods

For p-adic systems defined by linear polynomials with integer coefficients:

$$F = (a_0 + b_0 \times \dots, a_{p-1} + b_{p-1} \times), \ a_i, b_i \in \mathbb{Z}$$

- Every ultimately periodic expansion comes from a rational number
- Conjectures:
 - o All rational numbers have ultimately periodic expansions $\Leftrightarrow b_0 \cdots b_{p-1} < p^p$
 - Expansions of integers admit only finitely many different periods

For p=2:

$$F = (F[0], \dots, F[p-1]) : \mathbb{Z}_p \to \mathbb{Z}_p, \quad n \mapsto \Big(F[n\%p](n) - F[n\%p](n)\%p\Big)/p$$

$$F \text{ is called a } p\text{-adic system if } \frac{D(F)[m][0, k-1]}{D(F)[m][0, k-1]} = \frac{D(F)[n][0, k-1]}{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k$$

- There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions
- There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods

For p-adic systems defined by linear polynomials with integer coefficients:

$$F = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), a_i, b_i \in \mathbb{Z}$$

- Every ultimately periodic expansion comes from a rational number
- Conjectures:
 - o All rational numbers have ultimately periodic expansions $\Leftrightarrow b_0 \cdots b_{p-1} < p^p$
 - o Expansions of integers admit only finitely many different periods

For p=2:

•
$$D(a_0 + xb_0, a_1 + xb_1)[n] = D(0 + xb_0, 1 + xb_1)[\frac{n(b_0 - 2) + a_0}{a_1(b_0 - 2) - a_0(b_1 - 2)}]$$
 for all $n \in \mathbb{Z}_2$

$$\begin{aligned} & \overline{F} = (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ & F \text{ is called a } p\text{-adic system if } \underline{D(F)[m][0, k-1]} = \underline{D(F)[n][0, k-1]} \Leftrightarrow m \equiv n \mod p^k \end{aligned}$$

- There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions
- There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods

For p-adic systems defined by linear polynomials with integer coefficients:

$$F = (a_0 + b_0 \times \dots, a_{p-1} + b_{p-1} \times), \ a_i, b_i \in \mathbb{Z}$$

- Every ultimately periodic expansion comes from a rational number
- Conjectures:
 - o All rational numbers have ultimately periodic expansions $\Leftrightarrow b_0 \cdots b_{p-1} < p^p$
 - Expansions of integers admit only finitely many different periods

For p=2:

• $D(a_0 + xb_0, a_1 + xb_1)[n] = D(0 + xb_0, 1 + xb_1)[\frac{n(b_0 - 2) + a_0}{a_1(b_0 - 2) - a_0(b_1 - 2)}]$ for all $n \in \mathbb{Z}_2$ In particular: Whether or not all rational numbers have ultimately periodic expansions does not depend on constant coefficients a_i

$$\begin{aligned} & \overline{F} = (F[0], \dots, F[p-1]) : \overline{\mathbb{Z}_p \to \mathbb{Z}_p}, \quad n \mapsto \Big(F[n \% p](n) - \underline{F[n \% p](n) \% p} \Big) / p \\ & F \text{ is called a } p\text{-adic system if } \overline{D(F)[m][0, k-1]} = D(F)[n][0, k-1] \Leftrightarrow m \equiv n \mod p^k \end{aligned}$$

- There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions
- There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods

For p-adic systems defined by linear polynomials with integer coefficients:

$$F = (a_0 + b_0 \times \dots, a_{p-1} + b_{p-1} \times), \ a_i, b_i \in \mathbb{Z}$$

- Every ultimately periodic expansion comes from a rational number
- Conjectures:
 - All rational numbers have ultimately periodic expansions $\Leftrightarrow b_0 \cdots b_{p-1} < p^p$
 - Expansions of integers admit only finitely many different periods

For p=2:

• $D(a_0 + xb_0, a_1 + xb_1)[n] = D(0 + xb_0, 1 + xb_1)[\frac{n(b_0 - 2) + a_0}{a_1(b_0 - 2) - a_0(b_1 - 2)}]$ for all $n \in \mathbb{Z}_2$ In particular: Whether or not all rational numbers have ultimately periodic expansions does not depend on constant coefficients a_i